Short Communication

Some biochemical characteristics of the genera *Saprolegnia*, *Achlya* and *Aphanomyces* isolated from fishes with fungal infection

Kei Yuasa¹⁾ and Kishio Hatai²⁾

¹⁾Fisheries Aquaculture International Co. Ltd., No. 7 Kohji-machi Blg. Room B-105, 4–5, Kohji-machi, Chiyoda-ku, Tokyo 102, Japan

²⁾Division of Fish Diseases, Nippon Veterinary and Animal Science University, 1–7–1, Kyonan-cho, Musashino, Tokyo 180, Japan

Accepted for publication 18 November 1996

Carbohydrate and urease tests were performed on the genera *Saprolegnia*, *Achlya* and *Aphanomyces*. These tests may be used as additional criteria for the identification of fungi belonging to these genera.

Key Words——Achlya; Aphanomyces; carbohydrate test; Saprolegnia; urease test.

The identification of three genera, Saprolegnia, Achlya and Aphanomyces, in Saprolegniaceae has traditionally been based on the features of their asexual and sexual reproduction (Sparrow, 1960). However, some species need long periods to produce oogonia or lack them, and this makes identification difficult. Recently, the distinction between parasitic Saprolegnia parasitica Coker and saprophytic S. diclina Humphrey has relied on the characteristics of the ornaments on the spore and germination type of the spores (Pickerling et al., 1979; Beakes, 1983; Willoughby, 1985). Furthermore, characteristically catenulated gemmae in S. parasitica, which are observed in the isolates showing strong pathogenicity to rainbow trout by artificial infection, is also an important feature (Yuasa and Hatai, 1995). On the other hand, there are a few reports about biochemical characteristics of fungi in Saprolegniaceae. Wolf (1937) discovered that Achlva bisexualis Coker et Couch has a strong ability to hydrolyze peptone compared to S. ferax (Gruith.) Thuret. Gleason et al. (1970) having tested carbohydrates for the culture of lower fungi, reported that A. ambisexualis Raper showed a more rapid growth on the medium with sucrose than the genera Saprolegnia, Leptolegnia and Dictyuchus. The urea utilization test was conducted to identify some species of Fungi Imperfecti, but there has been no such report on lower fungi. In this study, carbohydrate and urease tests were performed on the genera Saprolegnia, Achlya and Aphanomyces. The possibility of using these characteristics for identification is also discussed.

The isolates used are shown in Table 1. *Saprolegnia parasitica* is divided into three groups according to the pathogenicity to rainbow trout fingerling and gemmae production (Yuasa and Hatai, 1995). Groups 1, 2 and 3

represented highly pathogenic, moderately pathogenic and non-pathogenic strains, respectively. For the carbohydrate utilization test, the medium used for culture the fungal isolates was Yeast Nitrogen Base agar (Difco). GY agar (Hatai and Egusa, 1979) was used for the urease test. To prepare the fungal isolates for the experiment, the isolates of the genus Saprolegr, ia were cultured at 20°C for 3 d, whereas the genera Achlya and Aphanomyces were cultured at 20°C for 7 d. For carbohydrate utilization test, Yeast Nitrogen Base broth (Difco) with 1% carbohydrate was prepared, adjusted to pH 7.2 and autoclaved at 110°C for 10 min. For urease test, GY broth with 1% urea was prepared, adjusted to pH 6.8 and filtered through a 0.45 μ m Millipore filter (Whatman). Brom thymol blue (BTB) and phenol red (PR) were used as indicators, added into Yeast Nitrogen Base broth and GY broth, respectively. Each test was performed in test tubes (1.5 mm \times 20 mm) containing 5 ml of the medium. Inocula were taken from the edge of a colony with a No. 2 cork borer (5.5 mm diam) and inoculated into each tube. The tubes were incubated at 20°C for 7 d, then the color change of the indicator was observed. Positive reaction was determined by the change of BTB to yellow in the carbohydrate utilization test, and of PR to pink in the urease test (Table 2).

All Saprolegnia isolates were found to utilize dextrose, maltose and soluble starch. Only *S. parasitica* group 1 could utilize cellobiose among *S. parasitica*. Saprolegnia parasitica group 1, except for NJM 9115, and *S. parasitica* group 2 was capable of utilizing trehalose, but *S. parasitica* group 3 was not. Saprolegnia ferax was able to utilize mannose and glycerol, but the other isolates of Saprolegnia were not. From these results, it is clear that *S. ferax* is distinguished from the

K. Yuasa and K. Hatai

Table 1. Details of isolates used in this study.

Species Isolate	Host/Habitat	Sites	Host location ^{a)}	Year of isolation				
Saprolegnia								
S. parasitica group 1								
NJM 8604 (H2)	coho salmon	E _{p)}	Miyagi	1986				
NJM 8761 (H15)	coho salmon	E	Miyagi	1987				
NJM 8629	coho salmon	Е	Miyagi	1986				
NJM 9106	ayu	Е	Wakayama	1991				
NJM 9115	ayu	Е	Tochigi	1991				
NJM 9305	ayu	E	Tochigi	1993				
S. parasitica group 2								
NJM 8602 (H7)	pejerry	Е	Kanagawa	1986				
NJM 8737 (H14)	rainbow trout	E	Gumma	1987				
NJM 9111	coho salmon	E	Tochigi	1991				
NJM 9302	pejerrey	Е	Tochigi	1993				
S. parasitica group 3	·		-					
NJM 8535 (H5)	pond water	_	Kanagawa	1985				
NJM 9101	ayu	(c)	Tochigi	1991				
NJM 9102	ayu	1	Tochigi	1991				
NJM 9115	ayu	Е	Shizuoka	1991				
NJM 9225	ayu	I.	Tochigi	1992				
S. diclina			·					
NJM 0005 (H3)	coho salmon	Е	Miyagi	1986				
NJM 0009 (H4)	ayu	Е	Kanagawa	1985				
NJM 1010 (H10)	yamame salmon	I	Tokyo	1986				
NJM 0010 (H13)	yamame salmon	I	Tokyo	1986				
NJM 1014 (H17)	yamame salmon	1	Tokyo	1986				
NJM 8536 (H18)	pond water		kanagawa	1985				
NJM 9105	ayu	I	Tochigi	1991				
NJM 9218	pond water	_	Tokyo	1992				
NJM 9222	ayu	_	Tochigi	1992				
Achlya								
A. prolifera								
NJM 8505	pond water	_	Gifu	1985				
NJM 9117	corydoras catfish	Е	Tokyo ^{d)}	1991				
NJM 9227	dwarf gourami	E	Tokyo ^{d)}	1992				
A. bisexualis		—	· - · · , -					
NJM 9205	sturgeon catfish	E	Tokyo ^{d)}	1992				
Achlγa spp.			- ,-					
NJM 9116	dwarf gourami	Е	Tokyo ^{d)}	1991				
Aphanomyces		-	· - · · , -					
A. piscicida								
NJM 8997	ayu	I	Tochigi	1989				
NJM 9030	ayu	i i	Shizuoka	1990				
Aphanomyces spp.	-,-	•						
NJM 9114	ayu	I	Tochigi	1991				
NJM 9226	pond water		Tokyo	1992				

a) Coho salmon, Oncorhynchus kisutch (Walbaum); ayu, Plecglossus altivelis Temminck et Schlegel; pejerrey, Odontesthes bonariensis Cuvier et Valenciennes; yamame salmon, Onchrhynchus masou (Brevoort); rainbow trout, Oncorphynchus mykiss Walbaum; dwarf gourami, Colisa Ialia (Hamilton et Buchanan); sturgeon catfish, Platystomatichthys sturio; corydoras catfish, Corydoras sp.

b) Isolated from fish with external saprolegniasis.

c) Isolated from fish with internal saprolegniasis.

d) These fishes were imported from Singapore.

	Carbohydrate utilization test																									
Fungus	Dextrose	Maltose	Dextrin	Starch	Fructose	Trehalose	Cellobiose	Mannose	Glycerol	Sucrose	Arabinose	Xylose	Sorbitol	Sorbose	Salicin	Melezitol	Glucoside	Raffinose	Adonitol	Galactose	Dulcitol	Inositol	Lactose	Mannitol	Rhamnose	Urea utilization test
Saprolegnia														-												
S. parasitica group 1																										
NJM9115	+	+	+	+	+	~	+			_	-	_		—			_	_		_	_	_	-			
Others	+	+	+	+	+	+	+	_		-	-	—		_			—	_		_		_		_	_	
S. parasitica group 2	+	+	$^+$	+	+	+	_	_		_	-	_	-	_			—	_		_					_	
S. parasitica group 3	+	+	+	+	+			_		_	_			-			_	_		_	_	_	~	_	_	
S. diclina																										
NJM0009	+	+	+	+	+	+	+	_	_	_	~	_	-	_			_	_		_		_		-	_	
NJM0005, NJM1014, NJM8540	+	+	+	+	+	+	-		_	_	-	_	-	_			_	_	-	_	_		-	· · · ·	_	
NJM1010, NJM0010	+	+	+	+	_			_	_	_		_		_			_	-		_	_	_		-	_	+
others	+	+	$^+$	+	+	-	-	_		_		_		-			—	_	~_	_	_	_			_	+
S. ferax	+	+	+	+	+	+	+	÷	+	_							_	_		_	_	_			_	+
Achlya																										
A. prolifera																										
NJM8505, NJM9227	+	+	+	+	+	$^+$	+	+	+	+	+	+	+	+	+	+-	+	+	+	_	_	_		-		+
NJM9117	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+-	+	+	+	+	_	_			_	+
A. bisexualis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_	_		-	_	+-
Achlya sp.	+	+	$^+$	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	_	_	_		~	_	+ '
Aphanomyces																										
A. piscicida	_		_	_	_	-			_	_	-	_		-			_	_	-						_	
Aphanomyces spp.	_		-	_	-	-		_	-	_		_		-	~		_	_	-		_				_	

Table 2. Carbohydrate and urea utilization test of three genera, Saprolegnia, Achlya and Aphanomyces.

other species in Saprolegnia. The isolates of Achlya could utilize 18-20 of the 25 carbohydrates tested, of which sucrose gave the strongest reaction. This result indicates that sucrose is useful for distinction of the genus Achlya from the other two genera. The isolates of the genus Aphanomyces could not use any of the carbohydrates tested. All isolates of S. parasitica showed negative reaction in the urea utilization test, except for S. ferax. Among S. diclina, isolates NJM 0005, NJM 0009, NJM 1014 and NJM 8536, which could utilize trehalose, showed a negative reaction in the urea utilization test, but the other trehalose-negative isolates of S. diclina showed a positive reaction in this test. Aphanomyces isolates studied here could not utilize urea. However, it is known that Aphanomyces spp. isolated from turtle, Clemmys japonica (Temminck et Schlegel, 1835), and soft-shelled turtle, Pelodiscus sinensis (Wiegmann), could utilize urea (unpublished data). Further studies on urea utilization are considered to be necessary for the genus Aphanomyces. As the above results, carbohydrate and urea utilization tests may be used as additional criteria for the identification of fungi belonging to the genera Saprolegnia, Achlya and Aphanomyces.

Literature cited

- Beakes, G. W. 1983. A comparative account of cyst coat ontogeny in saprophytic and fish-lesion isolates (pathogen) of the *Saprolegnia diclina-parasitica* complex. Can. J. Bot. 61: 603–625.
- Gleason, F. H., Rudolph, C. R. and Price, J. S. 1970. Growth of certain aquatic Oomycetes on amino acids 1. Saprolegnia, Achlya, Leptolegnia and Dictyuchus. Physiol. Plant. 23: 513–516.
- Hatai, K. and Egusa S. 1979. Studies on the pathogenic fungus of mycotic granulomatosis III. Development of the medium for MG-fungus. Fish Pathol. 13: 147–152.
- Pickerling, A. D., Willoughby, L. G. and Mc Grory, C. B. 1979. Fine structure of secondary zoospore cyst cases of *Saprolegnia* isolates of infected fish. Trans. Br. Mycol. Soc. 72: 427–436.
- Sparrow, F. K. 1960. Aquatic Phycomycetes, 2nd ed., Univ. Michigan Press, Ann Arbor.
- Willoughby, L. G. 1985. Rapid preliminary screening of Saprolegnia on fish. J. Fish Dis. 8: 473-476.
- Wolf, F. T. 1937. A nutritional study of Achlya bisexualis and Saprolegnia ferax. Am. J. Bot. 24: 119–123.
- Yuasa, K. and Hatai, K. 1995. Relationship between pathogenicity of *Saprolegnia* spp. isolated to rainbow trout and their biological characteristics. Fish Pathol. **30**: 101–106.